# 贪心算法理论基础

贪心的本质是选择每一阶段的局部最优,从而达到全局最优。

贪心算法一般分为如下四步:

  • 将问题分解为若干子问题
  • 找出适合的贪心策略
  • 求解每一个子问题的最优解
  • 将局部最优解堆叠成全局最优解

# 分发饼干

题目链接🔗

大尺寸的饼干既可以满足胃口大的孩子也可以满足胃口小的孩子,那么就应该优先满足胃口大的。

这里的局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩。

可以尝试使用贪心策略,先将饼干数组和小孩数组排序。

然后从后向前遍历小孩数组,用大饼干优先满足胃口大的,并统计满足小孩数量。

class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        sort(g.begin(), g.end());
        sort(s.begin(), s.end());
        int index = s.size() - 1; // 饼干数组的下标
        int result = 0;
        for (int i = g.size() - 1; i >= 0; i--) { // 遍历胃口
            if (index >= 0 && s[index] >= g[i]) { // 遍历饼干
                result++;
                index--;
            }
        }
        return result;
    }
};

# 摆动序列

题目链接🔗

用 [1,17,5,10,13,15,10,5,16,8] 来举例:

Alt text

局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值。

整体最优:整个序列有最多的局部峰值,从而达到最长摆动序列。

因为题目要求大的是最长摆动子序列长度,所以只统计峰值数量即可。

但要考虑两张异常情况: 上下中间有平坡、单调有平坡。

Alt text

class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        if (nums.size() <= 1) return nums.size();
        int curDiff = 0; // 当前一对差值
        int preDiff = 0; // 前一对差值
        int result = 1;  // 记录峰值个数,序列默认序列最右边有一个峰值
        for (int i = 0; i < nums.size() - 1; i++) {
            curDiff = nums[i + 1] - nums[i];
            // 出现峰值
            if ((preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)) {
                result++;
                preDiff = curDiff; // 注意这里,只在摆动变化的时候更新 prediff
            }
        }
        return result;
    }
};

# 最大子序和

题目链接🔗

局部最优:当前 “连续和” 为负数的时候立刻放弃,从下一个元素重新计算 “连续和”,因为负数加上下一个元素 “连续和” 只会越来越小。

全局最优:选取最大 “连续和”

局部最优的情况下,并记录最大的 “连续和”,可以推出全局最优。

Alt text

红色的起始位置就是贪心每次取 count 为正数的时候,开始一个区间的统计。

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int result = INT32_MIN;
        int count = 0;
        for (int i = 0; i < nums.size(); i++) {
            count += nums[i];
            if (count > result) { // 取区间累计的最大值(相当于不断确定最大子序终止位置)
                result = count;
            }
            if (count <= 0) count = 0; // 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和
        }
        return result;
    }
};